Ulam method for the Chirikov standard map

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poincaré recurrences and Ulam method for the Chirikov standard map

We study numerically the statistics of Poincaré recurrences for the Chirikov standard map and the separatrix map at parameters with a critical golden invariant curve. The properties of recurrences are analyzed with the help of a generalized Ulam method. This method allows us to construct the corresponding Ulam matrix whose spectrum and eigenstates are analyzed by the powerful Arnoldi method. We...

متن کامل

Chirikov standard map

(1959) Chirikov criterion (1969) Classical map: ¯ p = p + K sin x ¯ x = x + ¯ p (1979) Quantum map (kicked rotator): ¯ ψ = e −î p 2 /2 e −iK / cosˆx ψ (1959-2008) Hamiltonian classical / quantum chaos : H (ˆ p , ˆ x) = ˆ p 2 / 2 + K cosˆx m δ (t − m) [ ˆ p , ˆ x ] = −i (2001) Quantum computations (2008) Ongoing experiments with cold atoms and Bose-Einstein condensates

متن کامل

Diffusion and localization for the Chirikov typical map.

We consider the classical and quantum properties of the "Chirikov typical map," proposed by Boris Chirikov in 1969. This map is obtained from the well-known Chirikov standard map by introducing a finite-number T of random phase-shift angles. These angles induce a random behavior for small time-scales (tT) . We identi...

متن کامل

A new method for the generalized Hyers-Ulam-Rassias stability

We propose a new method, called the textit{the weighted space method}, for the study of the generalized Hyers-Ulam-Rassias stability. We use this method for a nonlinear functional equation, for Volterra and Fredholm integral operators.

متن کامل

Omega-limit Sets for the Stein-ulam Spiral Map

In the late 1950’s, using computers in the Los Alamos National Laboratory, Stanis law Ulam and Paul Stein performed a comprehensive research on a class of quadratic maps of the 2-dimensional simplex ∆ to itself. Those maps arise in the theory of population genetics. One of them has the behavior much different than the 96 other ones. We call it the Stein-Ulam Spiral map. In 1972, S. Vallander as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal B

سال: 2010

ISSN: 1434-6028,1434-6036

DOI: 10.1140/epjb/e2010-00190-6